Structural Indices of Graphs

نویسنده

  • Tzvetalin S. Vassilev
چکیده

In this talk we consider some results and open problems from the Chemical Graph Theory, mainly concerning structural indices/properties. The Atom Bond Connectivity index, also known as ABC index was defined by Estrada [4] with relation to the energy of formation of alkanes. It was quickly recognized that this index reflects important structural properties of graphs in general. The ABC index was extensively studied in the last three years, from the point of view of chemical graph theory [5, 6], and in general graphs [1]. It was also compared to other structural indices of graphs [2]. Das derives multiple results with implications to the minimum/maximum ABC-index on graphs. With relation to trees, it is known that among all the trees of the same number of vertices, the maximum ABC index is attained for the star graph. However, it is not known which tree(s) minimize(s) the ABC index. The problem seems to be hard. It is partially addressed in many sources [5, 1, 6], but remains open. We further investigate the trees that minimize the ABC index. Our investigations are limited to chemical trees, i.e. trees in which the maximum vertex degrees is 4. The chemical trees were introduced to reflect the structure of the carbon chains and the molecules based on them. Our approach is algorithmic. We identify certain types of edges (chemical bonds) that are important and occur frequently in chemical trees. Further, we study how the removal of a certain edge, the introduction of certain edge or the contraction of certain edge affect the ABC-index of the tree. We pay particular attention to the examples of minimal ABC index chemical trees provided by Dimitrov [3]. This is joint work with Laura Huntington.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

The Topological Indices of some Dendrimer Graphs

In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.

متن کامل

On multiplicative Zagreb indices of graphs

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

متن کامل

Computing Wiener and hyper–Wiener indices of unitary Cayley graphs

The unitary Cayley graph Xn has vertex set Zn = {0, 1,…, n-1} and vertices u and v are adjacent, if gcd(uv, n) = 1. In [A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881–1889], the energy of unitary Cayley graphs is computed. In this paper the Wiener and hyperWiener index of Xn is computed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012